Let $S \subseteq \mathbb{R}$. We call a real number x an upper bound for S if

$$(\forall s \in S) [x \ge s].$$

The completeness axiom states that if $S \subseteq \mathbb{R}$ is nonempty and has an upper bound, then it has a least upper bound, called the *supremum* of S. That is, there is a real number M such that:

1. $M \ge s$ for all $s \in S$;

2. For any upper bound x of S, we have $x \ge M$.

In fact, M is unique (see Problem 2). We use $\sup S$ to denote the¹ supremum of S.

Similarly, any $S \subseteq \mathbb{R}$ that is nonempty and bounded from below has a unique greatest lower bound called the *infimum*.

Problem 0

Briefly discuss the difference between *supremum* and *maximum*.

Problem 1

For each of the following sets, find the supremum/infimum or show that it doesn't exist. Which sets have maxima/minima?

1. $(-\infty, 0) \cup \{1\}$.

2.
$$\mathbb{Q} \cap (-\infty, \sqrt{2})$$

3.
$$\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$$
.

Problem 2

Let $S \subseteq \mathbb{R}$ be nonempty and bounded from above. Show that the supremum of S is unique: if both M and N are least upper bounds for S, then M = N.

Problem 3

Let $S \subseteq \mathbb{R}$ have a maximum M. Show that $M = \sup S$.

Problem 4

Let $S \subseteq \mathbb{R}$ be nonempty and bounded from above. Show that $M = \sup S$ if and only if M is an upper bound for S and $(\forall \epsilon > 0)(\exists s \in S)[M < s + \epsilon]$. Note: This is hard. Try taking the contrapositive of both implications.

An analogous statement holds for infima: for any $S \subseteq \mathbb{R}$ nonempty and bounded from below, $m = \inf S$ if and only if $(\forall \epsilon > 0)(\exists s \in S)[s - \epsilon < m]$.

¹Notice we can use "the" here as opposed to 'a': there is only one supremum due to uniqueness.

Here are some nice properties of sup (analogous properties hold for inf):

Problem 5

Let $S \subseteq \mathbb{R}$ be nonempty and bounded from above, and c > 0. Define

$$cS = \{cs : s \in S\}.$$

Show that $\sup cS = c \sup S$.

Problem 6

Let $S \subseteq \mathbb{R}$ be nonempty and bounded from above. Define

 $-S = \{-s : s \in S\}.$

Show that $\inf -S = -\sup S$.

Problem 7

Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be functions. We can define a new function $f + g : \mathbb{R} \to \mathbb{R}$ given by (f + g)(x) = f(x) + g(x). We can also define $\sup h$, for any function $h : \mathbb{R} \to \mathbb{R}$, as:

$$\sup h = \sup\{h(x) : x \in \mathbb{R}\}$$

Prove that if $\sup f$ and $\sup g$ both exist, then

$$\sup(f+g) \le \sup f + \sup g.$$

Give examples of f and g for which the above inequality is strict.